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We describe a nonlinear least squares inversion algorithm for obtaining elastic and electromagnetic
properties for piezoelectric materials from measured impedances. Richard Brent’s PRAXIS, a
general unconstrained minimization code is used for the nonlinear least squares fit. No explicit
derivatives of the goal functional are required by this code. Bound constraints are imposed in
order to limit the variability of the parameters to physically meaningful values. Since PRAXIS
is an unconstrained optimization code, these constraints are introduced via a novel change of
independent variables. The forward modeling is achieved by using a coupled finite element time
domain code for the elastic and electro-magnetic parts of the problem. We also describe how a
linearized sensitivity analysis can be used to suggest a priori which parameters can be calculated
from impedances measured on a given sample. Numerical results are included.

1. Introduction

The problem we consider is that of inverting for the parameters describing a piezoelectric
crystal model. Such a model is defined by elastic, electromagnetic, and coupling parameters,
by the geometry of the sample and that of the electrodes

The objective of the nonlinear inversion process is to improve upon the accuracy of
some nominal initial values of these parameters, using measured values at successive time
intervals of the resulting impedance, when a small voltage is applied to the crystal.

We start this task with a complete set of forward modeling and optimization tools,
namely PZFLEX and REVIEW !, for the finite-element solution of the transient response
of a piezoelectric material and for postprocessing the numerical results respectively. For the
optimization part we use PRAXIS, an implementation of the Principal Axis method for the
minimization of general functions 2.

The model we consider in this study requires ten parameters to describe the elastic and
electromagnetic properties and the coupling between the two phenomenae. Current practice
uses several IEEE standard shapes (corresponding essentially to asymptotic limit cases) in
order to determine different groups of parameters at a time by trial and error.

As a preprocess, we propose to make sensitivity analyses of different crystal shapes, not
necessarily in the IEEE set, in order to find configurations for which as many as possible
of the parameters can be determined. For this purpose we consider the linearized model,
which is represented by the Jacobian matrix of first derivatives of the Fourier Transform of
the impedance values with respect to model parameters. These derivatives are estimated
by finite differences.

Since the number of parameters is small, we can apply a direct Singular Value Decom-
position (SVD) based solver to this rectangular matrix calculated at a reference value of the
parameters (in practice all these parameters are known within 10% of their true values, for
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a given material). As explained in ?  we can use the SV decomposition to rank the relative
relevancy of each parameter, for a given data set. This can be used as a guide to design
geometrical configurations and placement of electrodes so that the measured impedance is
sensitive to as many parameters as possible, thus minimizing the number of samples that
need to be built in order to determine material properties accurately.

To make this paper self-contained we will describe briefly the forward modeling algo-
rithm; then we will explain how Jacobian matrices are calculated and describe the SVD
based sensitivity estimation procedure. Finally we will present some numerical examples to
show that this approach does work.

2. PZFLEX Modeling

Piezoelectric transducers convert electrical signals to mechanical signals and viceversa.

They serve as transmitters and receivers in imaging systems for sonar, medical, and NDE
non-destructive evaluation) applications, as well as in nonimaging applications like SAW

surface acoustic wave) devices in signal processing.

One of the most technically demanding applications is ultrasound (ultrasonic) medical
imaging. Operational emphasis for imaging transducers is broadband (impulsive) rather
than narrowband (continuous wave). Transducers are currently available for diagnostic
imaging and Doppler velocity measurement, as well as for a host of specialty applications
(intracavity, biopsy, etc.) and disease treatment (lithotripsy, hyperthermia, tissue ablation).
Over the last two decades the ultrasound industry has done a remarkable job in developing
and refining these devices using a combination of semi-analytical design procedures and
prototype experiments. However, it is apparent to many that conventional design methods
are approaching practical limits of effectiveness. The industry has been slowly recognizing
discrete numerical modeling on the computer as a complementary and useful solution.

Today nearly all of the major ultrasound system companies are experimenting with finite
element models using commercial packages like ANSYS or by writing their own codes. Most
have enjoyed only limited success at significant development and/or simulation costs. We
suggest that the main source of difficulty is universal reliance on classical implicit algorithms
for frequency-domain and time-domain analysis based on related experience with shock and
wave propagation problems. In general, implicit algorithms are best suited to linear static
problems, steady state vibrations, and low frequency dynamics. A much better choice
for transient phenomena, linear or nonlinear, is an explicit time-domain algorithm which
exploits the hyperbolic (wave) nature of the governing differential equations.

The finite element method reduces the electromechanical partial differential equations
(PDEs) over the model domain to a system of ordinary differential equations (ODEs) in
time. This is done using one of the nearly equivalent integral formalisms: virtual work, weak
form, Galerkin’s method, weighted residuals, or less formally, using point-wise enforcement
of the conservation and balance laws. The result is that spatial derivatives in the PDEs
are reduced to a summation of ”elemental” systems of linear algebraic equations on the
unknown field values at nodes of the finite element discretization. The continuum elements
used here are 4 node quadrilaterals in 2D and 8-node hexahedrons in 3D. The unknown
field over an element is represented by low order shape functions determined by nodal
(corner) values, i.e., bilinear in 2D and trilinear in 3D. Using a minimum of 15 elements
per wavelength limits wave dispersion errors to less than 1%. Experience has shown these
choices to offer the most robust basis for large-scale wave propagation analysis in structural
and isotropic or anisotropic continuum models.

When transient signals are of principal interest, the most direct solution method is step-
by-step integration in time. There are many ways to evaluate the current solution from
known results at previous time steps. Implicit methods couple the current solution vector,
hence, the global system of equations must be solved at each timestep. Their advantage is
unconditional stability with respect to time step. By contrast, explicit methods decouple the
current solution vector and eliminate the global system solve, but they are only conditionally
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stable, i.e., there is a time step limit (the Courant-Fiedrichs-Levy (CFL) condition) above
which the method is unstable. The caveat for implicit integration of wave phenomena is
that solution accuracy requires a time step smaller than one-tenth the period of the highest
frequency to be resolved. This is close to the CFL stability limit for explicit methods and
effectively removes the principal advantage of implicit integration.

Explicit integration of the field equations involves diagonalizing the uncoupled mass and
damping matrices, using nodal lumping, replacing the time derivatives with finite differ-
ences, and integrating using a central difference scheme (2nd order accurate). For stability
the time step must be smaller than the shortest wave transit time across any element (CFL
condition). This follows from the hyperbolic (wave) nature of the original PDEs, i.e., dur-
ing a time step the field at a point is only influenced by the field at neighboring points
within a sphere of radius éz = ¢,dt, where ¢, is the fastest local wave speed. Therefore,
for 6t < éz/c,, nodal fields are decoupled during a single time step and can be integrated
independently.

An important issue in transducer modeling is frequency-dependent material damping.
Regardless of the solution technique, fundamental assumptions must be made about the
structure of the uncoupled damping matrices. The two most convenient damping models
are mass-proportional and stiffness-proportional. A linear combination of the two is called
Rayleigh damping. In the frequency-domain, coefficients are simply chosen to give the
required damping at each calculated frequency. In the time-domain, constant coefficients
yield damping that is inversely or directly proportional to frequency, or a linear combination.
We also use a material-dependent, three-parameter viscoelastic damping model. Proper
choice of viscosity constants and a relaxation time yields a damping maximum at the selected
frequency and smooth fall-off. Therefore, viscoelastic models may be superposed to yield
a discrete spectrum of relaxation times that represent specified damping behavior over a
limited frequency range, but at significant cost in memory.

The final issue is radiation boundary conditions. It is always necessary to truncate the
finite element model in space because of limited computer memory. This is a fundamental
problem in numerical simulation and requires special boundary conditions to reduce spu-
rious reflections (grid truncation error). Time-domain continuum conditions are typically
derived from the one-way wave equation, with an ad hoc approximation used to fit the
discretization. Higher order implementations tend to degrade in 3D vector domains due
to this ad hoc discretization. A new and better approach operates directly on the finite
element equations using the general relation between spatial and temporal derivatives at an
arbitrary wavefront. This yields boundary node velocity in terms of its derivatives over the
element and stresses within the boundary element. The condition performs as well as a 4th
order paraxial absorber, with lower computational overhead and less impact on stability.

More details, including validation, can be found in *°.

3. The Nonlinear Least Squares Problem

Given an homogeneous piezoelectric crystal, a small voltage is applied and the resulting
impedance is calculated from measurements as a digitized function of time. This function is
Fast Fourier Transformed and the resulting complex samples constitute the observed data,
{I'},i=1,...,m.

Given a vector of model parameters a and using the finite element simulator described
above, we can calculate a similar response, that we call {/¢(a)}.

The measured data will be subject to errors and if we assume that these errors are
Gaussian distributed with zero mean this leads naturally to a least squares or best likelihood
fit.

There is only a narrow range of the parameters that correspond to valid physically
possible materials. If this feasibility range is not enforced the PZFLEX calculations may

fail. Thus, calling g(a) = Y7, (I? — If(ax))?, the minimization problem we want to solve
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- moi[n g(a) (3.1)

subject to:
a; < o < @

The bound constraints are used to limit the values of the model parameters to the
physical relevant domain. These bound constraints can be handled in several ways:

1. Transformation into an unconstrained problem by using penalty functions;
2. Transformation into an unconstrained problem by using barrier functions;
3. Using standard constrained optimization algorithms.

Penalty and barrier functions are known to have severe limitations for this kind of prob-
lems, while techniques for constrained problems are considerably more complicated than
those for unconstrained ones. Besides, there is also a lack of reliable codes that are special-
ized to the nonlinear least squares problem.

Thus, we have chosen a different approach, which consists of a change of independent
variables, so that when the new variables run over the whole space the physical parameters
are constrained to the desired box. This can be achieved by using the transformation:

o, =a;/(1+expa;) + a;/(1+ exp —z;)

which has the desired properties. Thus, by starting at a feasible point we should always
stay feasible. The inverse transformation is:

zi = —In[(a; — a;) /(@i — a)],

and those are the variables we will use in an unconstrained minimization algorithm to find
the best fit of the data.

3.1. Selecting Relevant Parameters Through the SVD Decomposition

As a preliminary step it is of interest to consider several crystal samples with different
geometries in order to find those that can lead to the determination of as many of the
parameters as possible. This suggests a sensitivity analysis and it is necessary because the
manufacturing of these samples is very costly and problematic.

Jupp and Vozoff ¢ introduced the idea of relevant and irrelevant parameters, based on
Singular Value Decomposition linearized analysis. We write first the Taylor expansion of
the misfit vector around a given point ac:

gla+da) =g(a) +J(a)la+ R(g,da), (3.2)

where J is the Jacobian of the goal functional g(a) and R represents high order terms
in the perturbation da. In our problem, these partial derivatives are calculated by finite
differences and thus require ten additional PZFLEX solves.

The Singular Value Decomposition of J can be written as:

J=vsUT =3 siviuf.
=1

where r < n is the rank of J. The normalized singular values are defined as: k; = s;/s;.
Introducing the rotated parameters (in tangent space):
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5p = s1VTia,

and neglecting higher order terms, we can write (3.2) as:

ég ~ Jéa = Ekicspiui,

=1

which shows the direct relationship between the singular values and the rotated parameters,
and also their influence on the variation of the misfit functional.
Thus,

I 6g ll3= ) _ kiopi?,

=1

since || u; ||2= 1. This equation shows that the parameters ép; that are associated with
singular values that are small relative to sy, will not contribute much to variations in the
misfit functional.

That is the key to our algorithm for selecting the relevant parameter set.
1. Given a parameter vector e, calculate J(a) and its SVD.
2. Let the matrix of the singular vectors scaled by the singular values be V.

3. Inspect the columns of V, and select the ones with /; norm above a certain threshold.
Choose the indices of the variables in parameter space corresponding to these entries
to form the subset IC of parameters that are most influenced by the data set.

4. Numerical Results

We consider a cylinder of piezoceramic material. The finite element modeling assumes
two planes of symmetry: axial at half height and radial, in order to optimize the computa-
tion, which becomes 2D.

For a fixed diameter of 10 mm we consider several heights, giving aspect ratios (diam-
eter/height) of 20/1, 5/1, 1/1, and 1/2. The 20/1 case corresponds to one of the IEEE
standard shapes.

4.1. Sensitivity Analysis

By performing the analysis described in the previous section we have calculated the
results shown in Table 1, where the numbers under the various parameters indicate how
well determined they are when the real and imaginary part of the impedance are used as the
data set. A value larger than 0.1 indicates a well determined parameter, while a value less
than 0.01 indicates a poorly determined one. These numbers correspond to the FKuclidean
norms of the columns of the matrix V7, scaled by the corresponding singular values.

These results indicate that considering truly three-dimensional shapes (such as the 1/1
or 1/2 aspect ratios), provides a better way to estimate more of the relevant parameters at
once than the IEEE shapes. Of course, this is made possible because we can use PZFLEX
to calculate the response of such a model. This is not possible with conventional asymptotic
methods.
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Table 1: Sensitivity analysis.

Aspect ratio | epll ep33 sl1 s12 s13 s33 s44 d15 d13 d33
20/1 0.0006 0.62 0.79 0.2 0.04 0.07 0.0008 0.000003 0.51 0.07
5/1 0.07 0.3 0.89 0.25 0.07 0.07 0.01 0.01 0.58 0.04
1/1 0.05 0.5 0.4 012 0.3 0.44 0.075 0.087 0.41 0.66
1/2 0.046 042 0.4 0.12 0.21 0.56 0.086 0.083 0.26 0.74

Table 2: Target parameters
Parameter | Value Name

epll 0.231e-7 dielectric constant

ep33 0.297e-7 dielectric constant

sl1 1.559e-11 | compliance term

s12 -0.441e-11 | compliance term

s13 -0.819e-11 | compliance term

s33 2.0e-11 compliance term

s44 4.48e-11 compliance term

d15 7.19e-10 piezoelectric stress constant
d13 -2.895e-10 | piezoelectric stress constant
d33 6.0471e-10 | piezoelectric stress constant

4.2. Parameter Determination

We consider now the disk with aspect ratio 1/2 to test our parameter determination code.
We will test PRAXIS, to least squares fit a data set consisting of the real and imaginary
parts of the FF'T of the impedance which, in the range 1K Hz to 1M H z is represented in
digital form by 1341 unequally spaced samples. One important feature of PRAXIS is that
it does not require derivatives with respect to the unknown parameters.

Due to symmetries and the fact that the material is considered homogeneous, the problem
can be cast as a 2D problem and for the wave lengths, materials and model size involved a
mesh of 25 x 50 elements is appropriate. For a driving frequency of 3.75 M H z the elastic
part of PZFLEX requires 7091 time steps. In a 300M H z Pentium Il computer under the
SOLARIS operating system an average solve takes approximately 75 seconds.

We first generate synthetic data by running PZFLEX with the set of parameters shown
in Table 2 (the "target values”). Then we perturb these values by 5.0% and call them the
”initial values”. The objective is to see how many of the target values of these parameters we
can recover, say to 1% accuracy or better, by using PZFLEX coupled with the unconstrained
optimization code PRAXIS, in order to fit the synthetic data in the least squares sense. We
also use the change of variables strategy explained above to force the parameters to stay
within a +8% box around the initial guess. After 172 evaluations (i.e., PZFLEX solves; a
3.5 hours job), PRAXIS produced the results shown in Table 3.
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Table 3: Final parameters and errors

Parameter | Value % error
epll 0.231e-7 0.12
ep33 0.296e-7 -0.33

s11 1.53e-11 2.11
s12 -0.491e-11 | 12.2
s13 -0.758e-11 | 6.81
s33 2.01e-11 0.68

s44 4.49e-11 0.3

d15 7.21e-10 0.32
d13 -2.63e-10 | -9.08
d33 6.521e-10 | 7.79

The begining and final residual mean squares were:

rmsg = 64844
rmsyrg = 1068

In Figures 1-4 we show the cross-plots of the target, and final, real and imaginary parts
of the impedance spectrum for low and high frequencies separately. Observe that there is a
change of scale, going from low to high frequency in order to enhance the details.

5. Solving the Optimization Problem Over the Internet

As part of a joint project with the Optimization Technology Center, run by Nortwestern
University and the Argonne National Laboratory, we are testing a new approach for solving
large scale optimization problems over the Internet.

This is an extension of the successful NEOS Server concept for the case in which large,
private, commercial codes are necessary to calculate functions and derivatives associated
with an optimization task. The assumption is that there is value in using the remote opti-
mization facility, either because of consulting support or the use of proprietory optimization
codes, or a combination of such facts. We have several problem areas in which such approach
could be valuable, and chose this application as the first test.

The code we are using is J. Nocedal’s LBFGS, a general optimization program with
bound constraints. The code is activated from our local machine in California. By using
several communication libraries provided by iNEOS, a channel is stablished through our
firewall that connects with the iNEOS server in Illinois and starts the optimization code.

After that, a dialogue between these two processes is in effect: the INEOS server requests
various actions from our code, mainly the calculation of the Residual Mean Square functional
and its partial derivatives at given values of the parameters. This requires 11 PZFLEX
solves, and thus it takes about 10’ to respond. The fitted real and imaginary parts of the
impedance are shown in Figures 5 and 6. See 7 for more details.

6. Conclusions

In the typical example above we have been able to recover half of the parameters to
the desired accuracy, an additional parameter has been improved by more than 50%, while
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the estimates for the remaining parameters have been worsened. Observe that our bound
constraints allow for a maximum error of 16% in the worst case scenario.

We also see that the fit of the Fourier Transform of the impedance data is quite adequate,

specially for the low frequencies. From experience in fitting this type of data by trial and
error, we conclude that this procedure is far superior, both in human time and accuracy.

References

1. FLEX User’s Manual. (Weidlinger Associates, Los Altos, CA ,1998).

2. R.P. Brent, Algorithms for Minimization Without Derivatives, (Prentice Hall, New Jersey, 1973).

3. V. Pereyra, ”Modeling, ray tracing, and block nonlinear travel-time inversion,” Pure and Applied
Geophysics 148, pp. 345-386 (1996).

4. N.N. Abboud, G.L. Wojcik, D.K. Vaughan, J. Mould, D.J. Powell, and L. Nikodym, ”Finite
element modeling for ultrasonic transducers,” Proc. SPIE Ist Symp. Medical Imaging, 1998.

5. G.L. Wojcik, D.K. Vaughan, N.N. Abboud and J. Mould, ”Electromechanical modeling using
explicit time-domain finite elements,” IEEE Ultrasonics Symp. Proc., 1993.

6. D.L.B. Jupp and K. Vozoff, ”Stable iterative methods for the inversion of geophysical data,”
Geophys. J. R. astr. Soc. 42, pp. 957-976 (1975).

7. M. Good, J.-P. Goux, J. Nocedal and V. Pereyra, 7iINEQOS: an interactive environment for non-

linear optimization,” to appear (2000).



9

Nonlinear Inversion of Piezoelectrical Transducer Impedance Data

S0+9Y°¢ S0+98'T S0+9C'T 00009

feu4 ——
(40118 94G) ssanb eniu|
(ued eay) 19610 ——

wn.oads ayl Jo ued Asuanbaiy moT

eieq Areuibew| pue [eay :SIXvid

0000%

00008

S0+9¢'T

S0+99°T

S0+9¢

S0+9v°¢

Figure 1:



10  Nonlinear Inversion of Piezoelectrical Transducer Impedance Data

G0+96 G0+3. G0+99 GO+9¢

— — T - T ——— , . O
TV N 2VA N / s TN W<)</ ]
- 0000T
- 0000¢
- 0000€
ssanb [eniu|
[euid ]
(ued jeay) 1060e] —— ]

wnaoads ay: Jo ued Aouanbal) ybiH

rleq aouepaduw| Areuibew| pue [eay :SIXVid

Figure 2:



11

Nonlinear Inversion of Piezoelectrical Transducer Impedance Data

S0+9€

S0+9Y°¢ S0+98'T S0+9¢C'T 00009

feu4 ——
(40118 94G) ssanb eniu|
(red Areuibewn) 1061 ——

wn.oads ayl Jo ued Asuanbaiy moT

eieq Areuibew| pue [eay :SIXvid

S0+9¢'T-

00008-

00001-

00001

00008

S0+9¢C'T

Figure 3:



12 Nonlinear Inversion of Piezoelectrical Transducer Impedance Data

S0+96 S0+3. G0+99 G0+9¢

0000€-
| 8
| - 0000¢-
% 0000T-
m ]
|
,,7 4
eu4 | 10
(10113 94G) ssanb fenu| ]
(ed Areuibewn) yobie] —— |

wnaoads ay: Jo ued Aouanbal) ybiH

eieq Areuibew| pue [eay :SIXvid

Figure 4:



13

Nonlinear Inversion of Piezoelectrical Transducer Impedance Data

90+971

G0+9°8

S0+99

e

S

suonelsll SO49710Z B
19be] ——

olrey 108dsy ¢/T 2sId
ued [eay:(s10wal) SO49

0000s

S0+9T

Figure 5:



14  Nonlinear Inversion of Piezoelectrical Transducer Impedance Data

90+91 S0+9°8 S0+99 S0+9Y G0+9¢

suonelsal Oz JIBUY ———
19be] ——

oiey 108dsy ¢/T 2sId

ued Areuibew|:(sowal) SO497

00009-

0000T-

00001

Figure 6:



