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Introduction

In [4] the author developed the method of iterated deferred corrections (IDC)
for the approximate solution of nonlinear operator equations in Banach spaces
by means of discretization algorithms. That method gave a way of increasing
the order of convergence (with respect to A, the discretization “step”) of the
approximations.

The theory was based on a theorem by STETTER [§] that under certain con-
ditions established the existence of asymptotic expansions (in powers of %) for
the global discretization error. Of capital importance for the feasibility of the
method was the existence of certain operators S, which had to approximate
segments of the local truncation error.

In this paper we intend to show that if the hypothesis of local stability is
replaced by that of uniform stability then some of the other hypotheses in Stetter’s
theorem are unnecessary. We also show that the IDC method can still be defined
under much weaker conditions on the operators S,. To achieve the first objective
we prove in Theorem 2.1 a nonlinear version of a classical theorem which says that:

“If the continuous problem has a solution then consistency and uniform
stability of the discretization imply existence and (discrete) convergence of the
approximate solution to the exact solution.”

AUBIN [2], BROWDER [3], and PETRYSHYN [7] obtain similar results on a fairly
different setting of the problem.

In §3 we prove our main result. This is contained in Theorem 3.2; the im-
provement upon our previous version ([4], Theorem 4.1) is that now the con-
struction of the operators S, is essentially reduced to a problem of interpolation,
while before it was tied up with the result of the (k£ —1)-correction, thus making
it problem dependent.

In a companion paper [6] we shall present concrete applications of the theory
to nonlinear boundary value problems for ordinary differential equations. Both
two-point and periodic boundary conditions will be considered and several nu-
merical examples will be given.
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§ 1. Basic Results and Definitions
Let us consider the nonlinear operator equation
F(x)=o0, (1.1)

where the continuous operator F maps a subset (@ (F)) of the Banach space D
into the Banach space E. We shall assume that (1.1) has a unique solution x*¢ 2 (F).

We are interested in the approximate solution of (1.1) by means of discretiza-
tion algorithms. A discretization algorithm is a one parameter family of quintuplets
Q={D,, D,, E,, ¢,, ¢t}, 0<h=<h,, where @, is a continuous operator (generally
nonlinear) mapping a subset (2 (@D,)) of D, into E,, where both are finite dimen-
sional B-spaces, and ¢,, ¢} are linear bounded mappings ¢,: D—D,, ¢}: E—>E,.
The mappings ¢,, ¢) are sometimes called space discretizations.

We require of the families {D,}, {E,} that they be directed sets (ordered by
inclusion: Dy, <D, iff D, is isomorphic and isometric to a subspace of D),
i.e.: for each pair D, , D, there exists D, such that D, <D, , D, <D, . We
finally require that if D), < D,, then A, =4,.

With respect to the discretization mappings ¢, we ask that their ranges
R (p)> 2 (Dy), and that ||@,| < K, where K is a constant independent of 4. Some
of these hypotheses are unnecessary when the D,, E, are subspaces of D, E
respectively, which is the setting of [3, 7].

We also assume that for each x¢ 2 (F) the operators F, @, are related by the
asymptotic expansion

D, (@, %) = ¢ {F(x) + gle (%) hl’i} 1O (PN +D) (1.2)

where the operators F; are given independently of 4, and p> 0.

The property |(D@, @, — @3 F) x| — 0, & — 0, is usually referred to as the con-
sistency of the discretization.

Condition (1.2) with N=1 shall be called consistency of order p of the dis-
cretization @, with respect to F.

We will say that @, is uniformly stable on a family of sets {,}, &7, D,
0<h=h,, if there exists a positive constant ¢, independent of % such that for

every V,, U, cs
Y T S 12, 5) — &, (U] = ¢ |V, — Ty. (1.3)

If D, =E, are infinite dimensional complex Hilbert spaces then (1.3) is implied
by the complex monotonicity condition (cf. ZARANTONELLO [10])

HD, (V) — D,(U), Vi, — U)| = c| Vi, — Ui, (1.4)

and the conclusion of Theorem 2.1 below still holds in this infinite dimensional
case (ZARANTONELLO [10], Theorem 1).

If @, is Fréchet differentiable and its Fréchet derivative @} is uniformly
Holder continuous at V¥, i.e. for [V, —V*|<s, |9, (V) — PG < LIV, — Vi,
0<«=1, where L is independent of %, then (1.3) is implied locally by the usual
condition of stability for linear operators

(2, ()] <5, (1.5)

where S is independent of % (cf. STETTER [9], Theorem 1).
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A superscript in parentheses following the name of an operator: F® will
always indicate its k-th Fréchet derivative (F' is the first derivative as usual).
The arguments for the multilinear operators F ®) (x) will sometimes be explicitly
displayed as in F®(x) (e, ..., ¢;), and other times will not, depending on the
needs of the moment. For instance: (p,e;, ..., ¢,¢) Will be shortened to ge,
and so on.

§ 2. Existence of Discrete Solutions and Asymptotic Expansions
We can now prove the following theorem.
Theorem 2.1, Lot x* be the unique solution of (1.1), and let Q be a consistent,

uniformly stable discretization of F on the spheres B (s 2*, 0), where g is independent
of h. Then, for 0<h=hy, the equation

D,(Vy=0 (2.1)

has a unique solution U(h) on B(p,x*, ), and furthermore
|U(#) —@,x*| -0 as h—0. (2.2)
Property (1.8) will be called the discrete convergence of the approximate solu-

tions U(h).
Proof. By consistency we know that

||(15h(q9hv)~zp2F(v)||—>0, h—0.
Therefore, by using x* instead of v we obtain
|®,(@sx*)] -0, k0. (2.3)

On the other hand, the stability says that the mapping @, is a homeomorphism
between B (p,x*, 9) and its image, R,,. Calling y§ = @, (¢, x*), we have obviously
y¥cR,, and |y¥| —0, as & > 0.

By Brouwer’s Domain Invariance Theorem (cf. ALERSANDROV [1]) the interior
of B is mapped onto the interior of R,, and the boundary onto the boundary.
Let V be such that |/ — ¢, #*|=o. We know that @, (V') belongs to the boundary
of R,, and by stability

194(V) — ¥ zce-

Therefore, the distance between y5 and the boundary of R, is =c g, and the
sphere B(y, ¢ o) is fully contained in R,. Taking now ho such that |yif<ce
it follows that 0¢ B(y¥, ¢ o) C R, for 0< h=hy, thus there exists a unique solution
(in B(g,x*, @) of (2.1). Let us call this solution U(k). By stability

[Uk) —gua*|<clyi| >0, as A0,

and the theorem is proved.

Remarks. Observe that the consistency has only been used at x*. If @, is
consistent of order p it follows that |y¥| =0 (#*) and consequently that

(U k) —@ux*| =0 (#).
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The vector U(h) —q,x* is sometimes called the global discretization error
(g.d.e.). In [8], STETTER proved a theorem about the existence of asymptotic
expansions in powers of % for the g.d.e. We shall state here a modified version
of that theorem. Its proof can be found in all detail in [5], and we do not re-
produce it here since it is very close to that of STETTER. Besides some minor
differences in the setting of the problem and some generalization in the exponents
that are allowed in the asymptotic expansions, the main contribution has already
been included in Theorem 2.1 where it was shown that existence and discrete
convergence of the approximate solutions U(k) is a consequence of the uniform
stability.

Theorem 2.2. Let F and 2 be as before, and let x* be the unique solution of
F(x)=01n D(F). Let ' and D), be M +-1 times continuously Fréchet diffeventiable
(M =1). Let us also assume that:

(1) [F'(x*)]7" exists;

(i) There exists asymptotic expansion rvelating @, F and their Fréchet derivatives
up to the M-th order:

P (91 x*) (Prer, o pae) =@{FD (4%) (e, .. )
L : (2.4)
+ 2 ED(x*) (e, ..., ) B*} + O (B M+ (=0, ..., M),
v=1
where the operators FU (x*) map Di into E, F"=F,. Also the @) (p,x*) are uni-
formly bounded with respect to h. (Hypothesis (ii) for =1 was omitted in STETTER’S
Theorem.)
(iil) [D;(@sx*)] exists and satisfies (1.5).
Let U(h) be the unigque solutions of the equations @,(V)=0 (in B(p,x*, o),
h=h,) which exist and are convergent of order p, i.e. |U(h) —q,x*|=0 (h?).
Then the global discretization error e(h) =U(h) —@,x* has an asymptotic ex-
pansion of the form

M
e(h) =) X e, "+ O (" 70), (2-5)
=1

where the e,c D, and are independent of h. Moreover, the e, are solutions of the linear
equations
F'(x*)e,=0b, (v=1,...,M),

where the b, can be recursively constructed.

Remark. It is not necessary that the F% be the Fréchet derivatives of the E,.
The theorem is true if the F) (x*) are replaced by given j-linear operators, not
necessarily bounded.

§ 3. Iterated Deferred Corrections (IDC)

In [4, §4] we developed the method of iterated deferred corrections. The
critical assumption there was the existence of sufficiently accurate discretization
operators for the local truncation error, i.e.: provided that U® () was convergent
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of order p-(k+1), we needed operators S, such that
E+1
7 Z T () = 5,13(0%) =0 (1 0+9). 6-)

With this we could easily prove that the solution U®*+¥ (k) to the problem
D, (V)=S,,,(U) satistied U*+? (h) — g, x*=0 (k" **2), and therefore we could
increase the order of accuracy of our approximate solution. The effective con-
struction of the operators S, was left to the reader, with the exception of a few
examples that we worked out at the end of the paper.

Now we wish to present a more complete version of that result in which the
existence of the operators S, is based on much weaker assumptions. Since the
whole procedure is of a recursive nature all our proofs are by induction and we
will state the results at the k-th step.

Let us consider then problem (1.1) with the discretization £ satisfying the
hypotheses of Theorem 2.2, with M =2N (the restriction to even M is just a
matter of convenience in the proofs). Let U equal U(%), the solution of (2.1).

Induction hypothesis: For a given k, 1<k=<N, there exists U*=V (h) such that

M—k+1
UED () — gy 2% = g, 3 5y o h0-+ O (P BI=4+2), 5.2)
o=k

where the e,_; ,cD are independent of h.
That this condition is fulfilled for £ =1 follows from Theorem 2.2. We set now
to prove that a U® (%) exists such that (3.2) holds. Let us first of all define

M—k+i]

Fyx) =2 E@#, N=[2] (3.3)

Lemma 3.1. Let us assume that the conditions of Theorem 2.2 and (3.2) are ful-
filled, and that F, is oo— differentiable. Assume also that there exists a oco— dif-
ferentiable operator Sy, satisfying for all | and ec D

ISP (@ur)| =0 (),

. . M-k 4
590 %) pre = A {ED (e 3 fh(en) et} o goerbrny O
v=k+1
with t,, being given operators independent of h. Then
O (71 %) e — S (UC) gy
(3-5)

M-k
= (Pg ‘{F(i) (x*) e+ Z Ee(i) (x*) e hpv} +0 (hP(M—k+1)) ’
y=Ft1

where the E,, are (M —k +-1)-times differentiable operators independent of h.
Proof. First of all we will establish a useful representation for (U*~% — g, x*)".
By (3.2) we know that

M—k+1 r
(UFD — g, x*) = [ Zk @1 1,0 W7+ O (W (M—k“))}
o=
M—k+1 "
= ( ng Pnlr—1,0 h"g) 40 (hP(M—k+2)) ,
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and therefore
M—k+1

Z;.' ro(@hhmt s Prlr—1,0—r(r—1) HF°

=R

(UEY—ga*y=1 ° +O (M=) for y<N,, (3.6)
O (W?M—*+2y  for y>N,,

where the g,, are polynomial forms r-homogeneous in their variables. By the

general Taylor formula and (3.3) we have for /=1, ..., M —k +1

, . Ng S”"”)((p #*)
SPUED) —SP (g a%) = 2= (UFD — g %) +-0 (B H1-44D),

k!
r=1

and using (3.4) (for S{*") and (3.6) in this last expression we obtain

o . Nk — M_k .
5};) (U(k—l)) . Sﬁ” (% x*) — {(pg 211,;(7%) (x*) + _ijﬂtl(g:-r) (x*) hpv}
M—k+1

: Zk grg(ek—l,k'"‘:ek-l,g—k(r—l)) hp9+0(hp(M_k+1))-
o=kr

Recalling the definition of F/* (x*) and reordering the right hand side of the
above expression we get
M—k

SPUO) = SPgua%) =98 S ) 1+ 0 (b4
v=k+1

where the sff)(x*) are j-linear operators independent of . Using (3.4) again (now
for S{)(g,x*)) we obtain for e=(e, ..., ¢,) € D
. — e M_k . .
SP(UEY) e = g} {Ee(” (#*) e+ 2 [sth(x*) + tf)(+*)] @hp"} +O (P M1—EED),
v=k+1
and finally, by (2.4)
[P gy #%) — S (U )] gy e
M=k , _
= ¢} {FU) (#*) e+ _%l[sgi(x*) + 80 (x*) + E9 (x%)] 3}””} + O (h? —h4D)

If we set F,,=s;,+¥,,+ F, the lemma follows.

Defining now U=, S,=o0, (3.7)

we can establish our main result, which is an improved version of Theorem 4.1
of [4].

Theorem 3.2. For problem (1.1) with the discretization £ assume that the con-
ditions of Theorem 2.2 are satisfied, and that there exist operators S, (k=0, ..., N)
as described in (3.7) and Lemma 3.1. In this case, the method of iterated deferred

corrections given by ®, (U(k)) — S (U*Y) =0 (p M=kt D) (3.8)
1s well defined and any solution of the inequality (3.8) satisfies

M-k
UM — g% =, 2] €5, WP+ O (P M =4Y), (3.9)
o=k+1

22  Numer. Math. Bd. 10
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Proof. By Lemma 3.1 the discretization (3.8) is consistent of order p(k+1).
It is stable because @, (V) is stable and S, (U%~Y) is just a constant term. There-
fore, Theorem 2.1 asserts that (3.8) has a solution which is convergent of order
#(k-+1), and Theorem 2.2 can be applied in order to obtain (3.9).

In a completely similar way we can prove the following theorem.

Theorem 3.3. For problem (1.1) with the discretization Q assume that the con-
ditions of Theorem 2.2 are satisfied with the exception of (ii). Inmstead of (ii) we
assume:

(i) There exist asymptotic expansions relating @,, F and their Fréchet deviva-
tives up to the M-th order:

of (@) (@, - ¢;)

k
={FO () e, )+ SEY () e ) 17 (24)

+ 5 Eg>(x*)(e1,...,e,.)hv}+0(hf>M+1) G=0,....M; k=1,..., [M]2]).

v=pk+1

Assume also that there exists operators S, (k=0, ..., N) satisfying:

Sp=0, 1S9 (g5 %*) [=O0(h?),
P (M—F)

. = ) 4
5/(3) ((Ph x*) Pre= wg{fi‘” (x*) e +_p2k+tl}(£(x*) eh”} +0 (hp(M—k) +1) , (3 )

—3 k .
where F,(x) = X\ F,, (%) h*1. In this case, the method (3.8) ts well defined and any
=1

J==
solution of that inequality satisfies:

p(M—k)
U® @y X% = @ Z €ho e —}—O(h?(M—k) +1) . (3,9,)
e=p(k+1)

Proof. It is enough to observe that with the assumption (3.4") the same proof
as that of Lemma 3.1 gives (3.5) with a right hand side containing a/l consecutive
powers of &, between p(k+1) and p (M —&).

Remarks. From the proofs above it is clear that the differentiability require-
ments for F, can be weakened by asking that they belong to (%, for ¢ sufficiently
large. A more interesting observation is that in the important case in which
the F, are linear then it is enough to have ¢=1. In fact the hypotheses on dif-

ferentiability of the F, (F, in Theorem 3.3) can be dropped altogether if, as we
remarked after Theorem 2.2, the B (x*) (or E{(x*)) are replaced by given
j-linear operators. Of course, in this case we will obtain in (3.5) (Lemma 3.11),
instead of the K% (x*) certain -linear operators, but this is all what is needed
in Theorems 3.2 and 3.3.

By means of Lemma 3.1 we have effectively reduced the task of constructing
the operators S, with the property (3.1). In fact, now it is enough to find any

p(k +1)-consistent discretization for F,(x), x¢ 2 (F).
Acknowledgement. 1 would like to express my gratitude to Professor EDUARDO
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